Mathematics 222B Lecture 21 Notes

Daniel Raban

April 12, 2022

1 The Vector Field Method for Dispersive Decay for the Wave Equation

1.1 Motivation for the vector field method

Today, we will continue discussing dispersive decay for the wave equation

$$
\begin{cases}\square \phi=0 & \text { in } \mathbb{R}^{1+d} \\ \left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=(g, h) . & \end{cases}
$$

Last time, we applied oscillatory integral techniques to the Fourier-analytic representation of the (frequency localized) fundamental solution. This led to the following dispersive inequality.

Theorem 1.1 (Dispersive inequality). For a solution ϕ to the wave equation,

$$
\|\phi(t)\|_{L^{\infty}} \lesssim t^{-\frac{d-1}{2}}\left(\|g\|_{B_{1}} \frac{d+1}{2}, 1+\|h\|_{B_{1}^{\frac{d-1}{2}, 1}}\right) .
$$

This is the starting point for many estimates that are useful for semilinear wave equations, equations of the form $\square \phi=N(\phi, \nabla \phi)$ with principal term $=\square \phi$. But many equations of interest may have quasilinear nonlinearity $\left(g^{\mu, \nu}(\phi, \nabla \phi) \partial_{\mu} \partial_{\nu} \phi\right)$ or just $g^{\mu, \nu}(t, x) \neq m^{\mu, \nu}$, for which the previous approach is harder to generalize.

Today, we will cover the vector field method, introduced by Klaineman in the 80s. This is a purely physical space method (as opposed to the Fourier analytic method above). ${ }^{1}$ The motivating question is: How do we derive pointwise bounds for $\nabla_{t, x} \phi$ from the energy method?

Step 1: The energy estimate tells us that

$$
E[\phi](t)=\int \frac{1}{2}\left(\partial_{t} \phi\right)^{2}+\frac{1}{2}|D \phi|^{2} d x
$$

[^0]is conserved. We can express this as a bound
$$
\left\|\nabla_{t, x} \phi(t)\right\|_{L^{2}} \lesssim\left\|\left.\nabla_{t, x} \phi\right|_{t=0}\right\|_{L^{2}} .
$$

Step 2: Notice that if $\square \phi=0$, then any derivative satisfies

$$
\square\left(\partial_{\mu} \phi\right)=\partial_{\mu} \square \phi=0 .
$$

The energy estimate for the derivative then tells us that

$$
\left\|\nabla_{t, x} D^{\alpha} \phi(t)\right\|_{L^{2}} \lesssim_{\alpha}\left\|\left.\nabla_{t, x} D^{\alpha} \phi\right|_{t=0}\right\|_{L^{2}} .
$$

Step 3: For $s>\frac{d}{2}$, we can use the Sobolev inequality to get

$$
\begin{aligned}
\left\|\nabla_{t, x} \phi(t)\right\|_{L_{x}^{\infty}} & \lesssim\left\|\nabla_{t, x} \phi(t)\right\|_{H_{x}^{s}} \\
& \lesssim\left\|\left.\nabla_{t, x} \phi\right|_{t=0}\right\|_{H_{x}^{s}}^{s} .
\end{aligned}
$$

The basic idea of Klaineman's method was to follow this format to prove dispersive decay. The goal is to derive a pointwise estimate of the form

$$
\left\|\nabla_{t, x} \phi(t)\right\|_{L_{x}^{\infty}} \lesssim t^{-\frac{d-1}{2}} \text { (Initial data). }
$$

What parts of the approach should we modify? The first key idea is to modify step 2 of the argument above. The key property is that if $\left[\partial_{\mu}, \square\right]=0$, then $\square \phi=0$ implies $\square \partial_{\mu} \phi=0$. Thinking about this more geometrically, consider the translation operator $\phi \mapsto \mathcal{T}_{x^{\mu}, h} \phi=\phi\left((t, x)+h e_{\mu}\right)$, where

$$
\partial_{\mu} \phi=\left.\frac{d}{d h} \mathcal{T}_{c^{\mu}, h} \phi\right|_{h=0}
$$

so $\mathcal{T}_{c^{\mu}, h}$ is the infinitesimal generator for ∂_{μ}. The important thing to notice is that $\mathcal{T}_{x^{\mu}, h}$ is a symmetry for \square :

$$
\square \mathcal{T}_{x^{\mu}, h} \phi=\mathcal{T}_{x^{\mu}, h} \square \phi .
$$

This process can be applied to any symmetries of \square !

1.2 Symmetries of the d'Alembertian

Recall that the symmetries of \square are the linear symmetries $\mathbb{R}^{1+d} \rightarrow \mathbb{R}^{1+d}$ that preserve $m(v, w)=m^{\mu, \nu} v_{\mu} w_{\nu}$, where $m=\operatorname{diag}(-1,1,1, \ldots, 1)$. This means we want to look for matrices L_{t} such that

$$
m^{\mu, \nu}\left(L_{t}\right)_{\mu}^{\mu^{\prime}}\left(L_{t}\right)_{\nu}^{\nu^{\prime}}=m^{\mu, \nu} .
$$

If we assume that $L_{0}=I$, then differentiating in t gives (denoting $\ell=\left.\frac{d}{d t} L_{t}\right|_{t=0}$)

$$
m^{\mu, \nu^{\prime}} \ell_{\mu}^{\mu^{\prime}}+m^{\mu^{\prime}, \nu} \ell_{\nu}^{\nu^{\prime}}=0
$$

If we define $\widetilde{\ell^{\mu}, \nu}=m^{\mu, \nu^{\prime}} \ell_{\mu}^{\mu^{\prime}}$, then we get $\widetilde{\ell}^{\nu^{\prime}, \mu^{\prime}}+\widetilde{\ell^{\prime}, \nu^{\prime}}=0$.
The symmetries of \square turn out to be compositions of the following:

- Translations $\mathcal{T}_{x^{\mu}, h}$
- Rotations

$$
\mathcal{R}_{x^{1}, x^{2}, h}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos h & -\sin h & 0 \\
0 & \sin h & \cos h & 0 \\
0 & 0 & 0 & I
\end{array}\right]
$$

- Lorentz boosts

$$
\mathcal{L}_{x^{1}, h}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{1-h^{2}}} & -\frac{h}{\sqrt{1-h^{2}}} & 0 \\
-\frac{h}{\sqrt{1-h^{2}}} & \frac{1}{\sqrt{1-h^{2}}} & 0 \\
0 & 0 & I
\end{array}\right]
$$

The infinitesimal generators (meaning operators $\left.\frac{d}{d h} \mathcal{S}_{h}(\cdot)\right|_{h=0}$ are

$$
\begin{aligned}
\Omega_{1,2} & =x^{1} \partial_{x^{2}}-x^{2} \partial_{x^{1}} \\
L_{1} & =x^{1} \partial_{t}+t \partial x^{1}
\end{aligned}
$$

and the corresponding generators for the other indices. Observe that

$$
\left[\partial_{\mu}, \square\right]=\left[\Omega_{j, k}, \square\right]=\left[L_{j}, \square\right]=0
$$

Also consider the scaling operator

$$
\mathcal{S}_{h} \phi=\phi(t / h, t / x)
$$

with intinitesimal generator

$$
S \phi=-\left.\frac{d}{d h} \mathcal{S}_{h} \phi\right|_{h=1}=\left(t \partial_{t}+x \partial_{x}\right) \phi
$$

This is not a symmetry of \square, because

$$
\begin{aligned}
\square \mathcal{S}_{h} \phi & =\square \phi(t / h, x / h) \\
& =\frac{1}{h^{2}}(\square \phi)(t / h, x / h) \\
& =\frac{1}{h^{2}} \mathcal{S}_{h}(\square \phi) .
\end{aligned}
$$

However, if $\square \phi=0$, then $\square \mathcal{S}_{h} \phi=0$. This is a reflection of the fact that

$$
S \square=S \square-2 \square,
$$

where the -2 represents the homogeneity of \square, a second order operator.
For $\Gamma \in\left\{\partial_{0}, \ldots, \partial_{d}, \Omega_{1,2}, \ldots, \Omega_{(d-1), d}, L_{1}, \ldots, L_{d}, S\right\}$, labeled in order as $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{K}$, we let

$$
\Gamma^{\alpha} \phi=\Gamma_{1}^{\alpha_{1}} \cdots \Gamma_{K}^{\alpha_{K}} \phi, \quad \alpha \in \mathbb{R}^{K}
$$

1.3 Bounds on commuting symmetries with derivatives

Our discussion has told the the following:
Lemma 1.1. If $\square \phi=0$, then $\square \Gamma^{\alpha} \phi=0$ for all α.
The energy estimate gives the following.
Corollary 1.1.

$$
\left\|\nabla_{t, x} \Gamma^{\alpha} \phi(t)\right\|_{L^{2}} \lesssim_{\alpha}\left\|\left.\nabla_{t, x} \Gamma^{\alpha} \phi\right|_{t=0}\right\|_{L^{2}} .
$$

Lemma 1.2. Given any smooth function ψ,

$$
\left|\Gamma^{\alpha} \nabla_{t, x} \psi\right| \lesssim \sum_{\beta:|\beta| \leq|\alpha|}\left|\nabla_{t, x} \Gamma^{\beta} \psi\right| .
$$

Here is the proof of the lemma:
Proof. When $\Gamma \in \partial_{0}, \ldots, \partial_{\mu}$, there is nothing to do. When $\Gamma \in\{\Omega, L, S\}$, then $\left[\Gamma, \partial_{x^{\mu}}\right]=$ $c_{\mu, \Gamma}^{\nu} \partial_{x^{\nu}}$; we can argue this by checking the generators or by claiming that these vector fields form a Lie algebra, so we get information about the Lie bracket. We complete the argument by induction.

Corollary 1.2. Fix s.

$$
\sum_{\alpha:|\alpha| \leq s}\left\|\Gamma^{\alpha} \nabla_{t, x} \psi(t)\right\|_{L^{2}} \lesssim \sum_{\alpha:|\alpha| \leq s}\left\|\left.\nabla_{t, x} \Gamma^{\alpha} \phi\right|_{t=0}\right\|_{L^{2}}
$$

1.4 The Klaineman-Sobolev inequality and proof of the dispersive estimate

The second key idea is to modify step 3, where we used the Sobolev inequality. We first need to understand what control Γ gives us.

Define $\Omega_{\mu, \nu}=x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}$, where

$$
x_{\mu}=x^{\nu} m_{\mu, \nu}= \begin{cases}-t & \mu=0 \\ x^{j} & m=h \in\{1, \ldots, d\} .\end{cases}
$$

If we have $\Omega_{j, k}$ as before, then $L_{j}=\Omega_{j, 0}$.

Lemma 1.3.

$$
\left(t^{2}-|x|^{2}\right) \partial_{\mu}=x_{\mu} S-x^{\nu} \Omega_{\mu, \nu} \frac{x^{\nu}}{|x|} L_{\nu}
$$

Proof. Observe that

$$
\begin{aligned}
x^{\nu} \Omega_{\mu, \nu} & =x^{\nu}\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \\
& =x_{\mu} \underbrace{x^{\nu} \partial_{\nu}}_{S}-\underbrace{x^{\nu} x_{\nu}}_{\left(-t^{2}+|x|^{2}\right)} \partial_{\mu} .
\end{aligned}
$$

This means that

$$
(|t|-|x|) \partial_{\mu}=\underbrace{\frac{x_{\mu}}{|t|+|x|}}_{\leq 1} S-\underbrace{\frac{x^{\nu}}{|t|+|x|}}_{\leq 1} \Omega_{\mu, \nu} .
$$

Away from the cone $t=|x|$, we get control of the derivatives.

In the region where $t \simeq|x|$, the rotation vector fields $\Omega_{j, k}$ are useful. The size of these rotation vector fields is $\left|\Omega_{j, k}\right| \simeq|x|$. We control all angular derivatives ($d-1$ many directions) with weight $|x| \simeq t$; this is why we get $\frac{d-1}{2}$ instead of $\frac{d}{2}$ in the dispersive estimate.

The analytic key to this method is the following inequality.
Theorem 1.2 (Klaineman-Sobolev inequality). Let ψ be a nice function, and let $s>\frac{d}{2}$. Then for $t>0$,

$$
|\psi(t, x)| \lesssim \frac{1}{(1+v)^{\frac{d-1}{2}}(1+|u|)^{1 / 2}} \sum_{|\alpha| \leq s}\left\|\Gamma^{\alpha} \psi\right\|_{L^{2}}
$$

where $v=t-|x|$ and $u=t-|x|$.
If we apply this theorem to $\psi=\nabla_{t, x} \phi$, we get

Corollary 1.3.

$$
\begin{aligned}
\left|\nabla_{t, x} \phi\right| & \lesssim \frac{1}{(1+v)^{\frac{d-1}{2}}(1+|u|)^{1 / 2}} \sum_{|\alpha| \leq s}\left\|\Gamma^{\alpha} \nabla_{t, x} \phi(t)\right\|_{L^{2}} \\
& \leq \frac{1}{(1+v)^{\frac{d-1}{2}}(1+|u|)^{1 / 2}} \sum_{|\alpha| \leq s}\left\|\left.\nabla_{t, x} \Gamma^{\alpha} \phi\right|_{t=0}\right\|_{L^{2}}
\end{aligned}
$$

Here, the factor in front is $\lesssim \frac{1}{(1+t)^{\frac{d-1}{2}}}$, so we have something a little better than our original bound.

Here is the idea behind proving the Klaineman-Sobolev inequality.
Proof. The key heuristic is that Γ gives control of $|u| \partial_{\mu, x}$. Now decompose the space into regions where $|x| \ll t$ and $x \simeq t$, and $|x| \gg t$.

Then let $w \simeq \frac{1}{1+|u|)^{d / 2}}$. When $|u| \lesssim 1$, the the usual Soboolev inequality works. Otherwise, if $|u| \gtrsim 1$, then $w \simeq \frac{1}{|u|^{d / 2}}$.

Lemma 1.4 (Rescaled Sobolev).

$$
|\psi(x)| \lesssim \frac{1}{u^{d / 2}} \sum_{|\alpha| \leq s}\left\||u|^{|\alpha|} \partial^{\alpha} \psi\right\|_{\left.L^{2}\left(B_{|u|} \mid x\right)\right)}
$$

Proof. This follows from rescaling the Sobolev inequality on the unit ball $B_{1}(0)$.
When t and $|x|$ are comparable, the weight $w \simeq \frac{1}{(1+v)^{\frac{d-1}{2}}}$. If $|v| \lesssim 1$, the usual Sobolev inequality works. If $|v| \gtrsim 1$, then $w \simeq \frac{1}{v^{\frac{d-1}{2}}} \simeq \frac{1}{|x|^{\frac{d-1}{2}}}$. The final lemma we use is this:
Lemma 1.5 (Rescaled Sobolev on an annulus).

$$
|\psi(x)| \lesssim \frac{1}{R^{\frac{d-1}{2}}} \sum_{\alpha, \beta:|\alpha|+|\beta| \leq s}\left(\int_{A_{R}}\left|\partial_{r}^{\alpha} \Omega_{x}^{\beta} \psi\right|^{2} d x\right)^{1 / 2},
$$

where $A_{R}=\{||x|-R| \leq c R\}$.

Here, $R^{\frac{d-1}{2}}$ responds to the angular directions that Ω_{x}^{β} has control over.

[^0]: ${ }^{1}$ In general, Fourier analytic methods work best for constant coefficient, linear equations because when multiplication is involved, it becomes convolution, which can get messy.

