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1 The Vector Field Method for Dispersive Decay for the
Wave Equation

1.1 Motivation for the vector field method

Today, we will continue discussing dispersive decay for the wave equation

{Dqs -0 iy R
(¢, 0t0) =0 = (g, h).

Last time, we applied oscillatory integral techniques to the Fourier-analytic representation
of the (frequency localized) fundamental solution. This led to the following dispersive
inequality.

Theorem 1.1 (Dispersive inequality). For a solution ¢ to the wave equation,

l6@lz= ST (gl aga, + 1Al as)).
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This is the starting point for many estimates that are useful for semilinear wave
equations, equations of the form ¢ = N(¢,V¢) with principal term = [O¢. But
many equations of interest may have quasilinear nonlinearity (g"" (¢, V$)0,0,¢) or just
gv (t, x) # mtY, for which the previous approach is harder to generalize.

Today, we will cover the vector field method, introduced by Klaineman in the 80s. This
is a purely physical space method (as opposed to the Fourier analytic method above).!
The motivating question is: How do we derive pointwise bounds for V; ;¢ from the energy
method?

Step 1: The energy estimate tells us that

Blolt) = [ 5016 + 5Dop ds

Tn general, Fourier analytic methods work best for constant coefficient, linear equations because when
multiplication is involved, it becomes convolution, which can get messy.



is conserved. We can express this as a bound

IViad()ll2 S IViadli=oll2-
Step 2: Notice that if ¢ = 0, then any derivative satisfies

O(0u¢) = 0,80¢ = 0.
The energy estimate for the derivative then tells us that
IViaD0()]| L2 Sa IViaD@li=ol 12-

Step 3: For s > g, we can use the Sobolev inequality to get

IViad(D)lze S Vead(t)|lms

S IVia@li=ollms-

The basic idea of Klaineman’s method was to follow this format to prove dispersive
decay. The goal is to derive a pointwise estimate of the form

[Viead(t)||Lee S t_%(lnitial data).

What parts of the approach should we modify? The first key idea is to modify step 2
of the argument above. The key property is that if [9,,0] = 0, then ¢ = 0 implies
00,9 = 0. Thinking about this more geometrically, consider the translation operator
¢ = Tonnd = ¢((t, x) + he,), where

d
Oup = %%u,mﬁ\h:o,

s0 Ten p, is the infinitesimal generator for d,. The important thing to notice is that T p, is
a symmetry for [I:

OTen n¢ = Ton no.

This process can be applied to any symmetries of [!

1.2 Symmetries of the d’Alembertian

Recall that the symmetries of (I are the linear symmetries R*% — R*? that preserve
m(v,w) = m*Yv,w,, where m = diag(—1,1,1,...,1). This means we want to look for
matrices L; such that

mtY (L) (Ly)y = m.

If we assume that Lo = I, then differentiating in ¢ gives (denoting ¢ = %Ltltzg)
mt L +mirE) = 0.

If we define (4" = m“”’lﬁﬁl, then we get g =
The symmetries of [ turn out to be compositions of the following:



e Translations Tpu p,

e Rotations

1 0 0 0
R, = 0 cosh —sinh 0
z,%h 0 sinh cosh O
0 0 0 I
e Lorentz boosts . ,
V1-h2 V1-h2
Lon =~y 11—h2
0 0 I

The infinitesimal generators (meaning operators dihSh(‘)| h=0 are
Q1o =2'0p2 — 2%0,1.

Ly = 210, + toz'

and the corresponding generators for the other indices. Observe that

[auv O] = [QijD] = [Ljv O] =o.

Also consider the scaling operator
Sne = ¢(t/h, t/x).

with intinitesimal generator

d
S¢p = —%Sh@h:l = (t0 + x0y) .

This is not a symmetry of (1, because
OSpg =Ue(t/h, z/h)
= 5 (O0)(t/h, /)
= %Sh(mﬁf))‘
However, if (¢ = 0, then OS¢ = 0. This is a reflection of the fact that
SO = s0-—20,

where the —2 represents the homogeneity of [, a second order operator.

For T € {00, ---,04, Q1,25+, Qa-1),d» L1, - - -, La, S}, labeled in order as I'y, 'y, . ...

we let
[ =T ... T ¢, o € RE.
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1.3 Bounds on commuting symmetries with derivatives

Our discussion has told the the following:
Lemma 1.1. IfU¢ = 0, then OI'*¢p = 0 for all «.
The energy estimate gives the following.

Corollary 1.1.
IVl *¢(@)l| 22 Sa IVeal dli=oll 2.

Lemma 1.2. Given any smooth function 1,
DVt S ) Veal ).
B:1BI< e
Here is the proof of the lemma:

Proof. When I € 0y, ..., 0,, there is nothing to do. When I' € {Q, L, S}, then [I', 9] =
cz,rax,,; we can argue this by checking the generators or by claiming that these vector
fields form a Lie algebra, so we get information about the Lie bracket. We complete the
argument by induction. O

Corollary 1.2. Fix s.

STVt e £ Y IVeal *Gleoll o
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1.4 The Klaineman-Sobolev inequality and proof of the dispersive esti-
mate

The second key idea is to modify step 3, where we used the Sobolev inequality. We first
need to understand what control I' gives us.
Define Q,,, = x,0, — x,0,, where

—t u=20

_ v _ .
T = W {3:] m=~he{l,...,d}.
If we have ;. as before, then L; = €2;,.

Lemma 1.3.
(t* — |2|*)0, = 2,8 — 2" QL.



Proof. Observe that

Q= ¥ (x,0, — 2,0,)
=x,2"0,— 2"z, O O
~—— —~—
s (—t2+[z|?)

This means that
Ty i

S — Q
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<1 <1

(It = |2[) 0 =

Away from the cone t = |z|, we get control of the derivatives.

In the region where t ~ |z|, the rotation vector fields €25, are useful. The size of these rota-
tion vector fields is [€2; x| =~ |z|. We control all angular derivatives (d — 1 many directions)
with weight |z| ~ ¢; this is why we get % instead of % in the dispersive estimate.

The analytic key to this method is the following inequality.

Theorem 1.2 (Klaineman-Sobolev inequality). Let ¢ be a nice function, and let s > g
Then fort > 0,

(e, )| < 1T 1z,
<1+v>z<1+|u\ .|Z "

where v =1t — |z| and u =t — |z|.
If we apply this theorem to ¢ = V; .¢, we get
Corollary 1.3.

|Vt,w¢| 5

) > ATVt 12

la|<s

D IVeal*lioll2

(140)% (1+ [u)1/2 o] <s

(1+v)7

<

1
1+
1
o



Here, the factor in front is < L. so we have something a little better than our

(1+t) 2

original bound.
Here is the idea behind proving the Klaineman-Sobolev inequality.

Proof. The key heuristic is that I" gives control of |u|0, .. Now decompose the space into
regions where || < ¢t and x ~ ¢, and |z| > t.

Then let w ~ When |u| < 1, the the usual Soboolev inequality works. Otherwise,

S
Lful)4/2”
if |u] 2 1, then w ~ |1L|+/2'

Lemma 1.4 (Rescaled Sobolev).

1 (07 o
V()| < i > ul*o Yllz2(B,y @)

la|<s
Proof. This follows from rescaling the Sobolev inequality on the unit ball By(0). O
When ¢ and |z| are comparable, the weight w ~ ) 1% . If Jv| £ 1, the usual Sobolev
inequality works. If |v| 2 1, then w ~ - % ~ |x|; ( JTr}ﬁe final lemma we use is this:

Lemma 1.5 (Rescaled Sobolev on an annulus).

()] < 3 ( / |a“ﬂ%|2dx) "
~ —1 AR ' xT

R glaltig/<s




where Ar = {||z| — R| < cR}.

Here, R responds to the angular directions that Qg has control over.
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