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1 The Vector Field Method for Dispersive Decay for the
Wave Equation

1.1 Motivation for the vector field method

Today, we will continue discussing dispersive decay for the wave equation{
�φ = 0 in R1+d

(φ, ∂tφ)|t=0 = (g, h).

Last time, we applied oscillatory integral techniques to the Fourier-analytic representation
of the (frequency localized) fundamental solution. This led to the following dispersive
inequality.

Theorem 1.1 (Dispersive inequality). For a solution φ to the wave equation,

‖φ(t)‖L∞ . t−
d−1
2 (‖g‖

B
d+1
2 ,1

1

+ ‖h‖
B
d−1
2 ,1

1

).

This is the starting point for many estimates that are useful for semilinear wave
equations, equations of the form �φ = N(φ,∇φ) with principal term = �φ. But
many equations of interest may have quasilinear nonlinearity (gµ,ν(φ,∇φ)∂µ∂νφ) or just
gµ,ν(t, x) 6= mµ,ν , for which the previous approach is harder to generalize.

Today, we will cover the vector field method, introduced by Klaineman in the 80s. This
is a purely physical space method (as opposed to the Fourier analytic method above).1

The motivating question is: How do we derive pointwise bounds for ∇t,xφ from the energy
method?

Step 1: The energy estimate tells us that

E[φ](t) =

∫
1

2
(∂tφ)2 +

1

2
|Dφ|2 dx

1In general, Fourier analytic methods work best for constant coefficient, linear equations because when
multiplication is involved, it becomes convolution, which can get messy.
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is conserved. We can express this as a bound

‖∇t,xφ(t)‖L2 . ‖∇t,xφ|t=0‖L2 .

Step 2: Notice that if �φ = 0, then any derivative satisfies

�(∂µφ) = ∂µ�φ = 0.

The energy estimate for the derivative then tells us that

‖∇t,xDαφ(t)‖L2 .α ‖∇t,xDαφ|t=0‖L2 .

Step 3: For s > d
2 , we can use the Sobolev inequality to get

‖∇t,xφ(t)‖L∞x . ‖∇t,xφ(t)‖Hs
x

. ‖∇t,xφ|t=0‖Hs
x
.

The basic idea of Klaineman’s method was to follow this format to prove dispersive
decay. The goal is to derive a pointwise estimate of the form

‖∇t,xφ(t)‖L∞x . t
− d−1

2 (Initial data).

What parts of the approach should we modify? The first key idea is to modify step 2
of the argument above. The key property is that if [∂µ,�] = 0, then �φ = 0 implies
�∂µφ = 0. Thinking about this more geometrically, consider the translation operator
φ 7→ Txµ,hφ = φ((t, x) + heµ), where

∂µφ =
d

dh
Tcµ,hφ|h=0,

so Tcµ,h is the infinitesimal generator for ∂µ. The important thing to notice is that Txµ,h is
a symmetry for �:

�Txµ,hφ = Txµ,h�φ.
This process can be applied to any symmetries of �!

1.2 Symmetries of the d’Alembertian

Recall that the symmetries of � are the linear symmetries R1+d → R1+d that preserve
m(v, w) = mµ,νvµwν , where m = diag(−1, 1, 1, . . . , 1). This means we want to look for
matrices Lt such that

mµ,ν(Lt)
µ′
µ (Lt)

ν′
ν = mµ,ν .

If we assume that L0 = I, then differentiating in t gives (denoting ` = d
dtLt|t=0)

mµ,ν′`µ
′
µ +mµ′,ν`ν

′
ν = 0.

If we define ˜̀µ,ν = mµ,ν′`µ
′
µ , then we get ˜̀ν′,µ′ + ˜̀µ′,ν′ = 0.

The symmetries of � turn out to be compositions of the following:
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• Translations Txµ,h

• Rotations

Rx1,x2,h =


1 0 0 0
0 cosh − sinh 0
0 sinh cosh 0
0 0 0 I


• Lorentz boosts

Lx1,h =


1√

1−h2 − h√
1−h2 0

− h√
1−h2

1√
1−h2 0

0 0 I


The infinitesimal generators (meaning operators d

dhSh(·)|h=0 are

Ω1,2 = x1∂x2 − x2∂x1 .

L1 = x1∂t + t∂x1

and the corresponding generators for the other indices. Observe that

[∂µ,�] = [Ωj,k,�] = [Lj ,�] = 0.

Also consider the scaling operator

Shφ = φ(t/h, t/x).

with intinitesimal generator

Sφ = − d

dh
Shφ|h=1 = (t∂t + x∂x)φ.

This is not a symmetry of �, because

�Shφ = �φ(t/h, x/h)

=
1

h2
(�φ)(t/h, x/h)

=
1

h2
Sh(�φ).

However, if �φ = 0, then �Shφ = 0. This is a reflection of the fact that

S� = S�− 2�,

where the −2 represents the homogeneity of �, a second order operator.
For Γ ∈ {∂0, . . . , ∂d,Ω1,2, . . . ,Ω(d−1),d, L1, . . . , Ld, S}, labeled in order as Γ1,Γ2, . . . ,ΓK ,

we let
Γαφ = Γα1

1 · · ·Γ
αK
K φ, α ∈ RK .
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1.3 Bounds on commuting symmetries with derivatives

Our discussion has told the the following:

Lemma 1.1. If �φ = 0, then �Γαφ = 0 for all α.

The energy estimate gives the following.

Corollary 1.1.
‖∇t,xΓαφ(t)‖L2 .α ‖∇t,xΓαφ|t=0‖L2 .

Lemma 1.2. Given any smooth function ψ,

|Γα∇t,xψ| .
∑

β:|β|≤|α|

|∇t,xΓβψ|.

Here is the proof of the lemma:

Proof. When Γ ∈ ∂0, . . . , ∂µ, there is nothing to do. When Γ ∈ {Ω, L, S}, then [Γ, ∂xµ ] =
cνµ,Γ∂xν ; we can argue this by checking the generators or by claiming that these vector
fields form a Lie algebra, so we get information about the Lie bracket. We complete the
argument by induction.

Corollary 1.2. Fix s.∑
α:|α|≤s

‖Γα∇t,xψ(t)‖L2 .
∑

α:|α|≤s

‖∇t,xΓαφ|t=0‖L2 .

1.4 The Klaineman-Sobolev inequality and proof of the dispersive esti-
mate

The second key idea is to modify step 3, where we used the Sobolev inequality. We first
need to understand what control Γ gives us.

Define Ωµ,ν = xµ∂ν − xν∂µ, where

xµ = xνmµ,ν =

{
−t µ = 0

xj m = h ∈ {1, . . . , d}.

If we have Ωj,k as before, then Lj = Ωj,0.

Lemma 1.3.

(t2 − |x|2)∂µ = xµS − xνΩµ,ν
xν

|x|
Lν .
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Proof. Observe that

xνΩµ,ν = xν(xµ∂ν − xν∂µ)

= xµ x
ν∂ν︸︷︷︸
S

− xνxν︸ ︷︷ ︸
(−t2+|x|2)

∂µ.

This means that

(|t| − |x|)∂µ =
xµ

|t|+ |x|︸ ︷︷ ︸
≤1

S − xν

|t|+ |x|︸ ︷︷ ︸
≤1

Ωµ,ν .

Away from the cone t = |x|, we get control of the derivatives.

In the region where t ' |x|, the rotation vector fields Ωj,k are useful. The size of these rota-
tion vector fields is |Ωj,k| ' |x|. We control all angular derivatives (d− 1 many directions)
with weight |x| ' t; this is why we get d−1

2 instead of d
2 in the dispersive estimate.

The analytic key to this method is the following inequality.

Theorem 1.2 (Klaineman-Sobolev inequality). Let ψ be a nice function, and let s > d
2 .

Then for t > 0,

|ψ(t, x)| . 1

(1 + v)
d−1
2 (1 + |u|)1/2

∑
|α|≤s

‖Γαψ‖L2 ,

where v = t− |x| and u = t− |x|.

If we apply this theorem to ψ = ∇t,xφ, we get

Corollary 1.3.

|∇t,xφ| .
1

(1 + v)
d−1
2 (1 + |u|)1/2

∑
|α|≤s

‖Γα∇t,xφ(t)‖L2

≤ 1

(1 + v)
d−1
2 (1 + |u|)1/2

∑
|α|≤s

‖∇t,xΓαφ|t=0‖L2
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Here, the factor in front is . 1

(1+t)
d−1
2

, so we have something a little better than our

original bound.
Here is the idea behind proving the Klaineman-Sobolev inequality.

Proof. The key heuristic is that Γ gives control of |u|∂µ,x. Now decompose the space into
regions where |x| � t and x ' t, and |x| � t.

Then let w ' 1
1+|u|)d/2 . When |u| . 1, the the usual Soboolev inequality works. Otherwise,

if |u| & 1, then w ' 1
|u|d/2 .

Lemma 1.4 (Rescaled Sobolev).

|ψ(x)| . 1

ud/2

∑
|α|≤s

‖|u||α|∂αψ‖L2(B|u|(x))

Proof. This follows from rescaling the Sobolev inequality on the unit ball B1(0).

When t and |x| are comparable, the weight w ' 1

(1+v)
d−1
2

. If |v| . 1, the usual Sobolev

inequality works. If |v| & 1, then w ' 1

v
d−1
2

' 1

|x|
d−1
2

. The final lemma we use is this:

Lemma 1.5 (Rescaled Sobolev on an annulus).

|ψ(x)| . 1

R
d−1
2

∑
α,β:|α|+|β|≤s

(∫
AR

|∂αr Ωβ
xψ|2 dx

)1/2

,
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where AR = {||x| −R| ≤ cR}.

Here, R
d−1
2 responds to the angular directions that Ωβ

x has control over.
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